3.82 \(\int \frac{x^4}{a x+b x^3+c x^5} \, dx\)

Optimal. Leaf size=63 \[ \frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c \sqrt{b^2-4 a c}}+\frac{\log \left (a+b x^2+c x^4\right )}{4 c} \]

[Out]

(b*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c*Sqrt[b^2 - 4*a*c]) + Log[a + b*x^2 + c*x^4]/(4*c)

________________________________________________________________________________________

Rubi [A]  time = 0.0673125, antiderivative size = 63, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1585, 1114, 634, 618, 206, 628} \[ \frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c \sqrt{b^2-4 a c}}+\frac{\log \left (a+b x^2+c x^4\right )}{4 c} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(a*x + b*x^3 + c*x^5),x]

[Out]

(b*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(2*c*Sqrt[b^2 - 4*a*c]) + Log[a + b*x^2 + c*x^4]/(4*c)

Rule 1585

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^4}{a x+b x^3+c x^5} \, dx &=\int \frac{x^3}{a+b x^2+c x^4} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{a+b x+c x^2} \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{b+2 c x}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )}{4 c}\\ &=\frac{\log \left (a+b x^2+c x^4\right )}{4 c}+\frac{b \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{2 c}\\ &=\frac{b \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{2 c \sqrt{b^2-4 a c}}+\frac{\log \left (a+b x^2+c x^4\right )}{4 c}\\ \end{align*}

Mathematica [A]  time = 0.0279847, size = 62, normalized size = 0.98 \[ \frac{\log \left (a+b x^2+c x^4\right )-\frac{2 b \tan ^{-1}\left (\frac{b+2 c x^2}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}}}{4 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(a*x + b*x^3 + c*x^5),x]

[Out]

((-2*b*ArcTan[(b + 2*c*x^2)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*c] + Log[a + b*x^2 + c*x^4])/(4*c)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 60, normalized size = 1. \begin{align*}{\frac{\ln \left ( c{x}^{4}+b{x}^{2}+a \right ) }{4\,c}}-{\frac{b}{2\,c}\arctan \left ({(2\,c{x}^{2}+b){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \right ){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(c*x^5+b*x^3+a*x),x)

[Out]

1/4*ln(c*x^4+b*x^2+a)/c-1/2/c*b/(4*a*c-b^2)^(1/2)*arctan((2*c*x^2+b)/(4*a*c-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4}}{c x^{5} + b x^{3} + a x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^5+b*x^3+a*x),x, algorithm="maxima")

[Out]

integrate(x^4/(c*x^5 + b*x^3 + a*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.31587, size = 443, normalized size = 7.03 \begin{align*} \left [\frac{\sqrt{b^{2} - 4 \, a c} b \log \left (\frac{2 \, c^{2} x^{4} + 2 \, b c x^{2} + b^{2} - 2 \, a c +{\left (2 \, c x^{2} + b\right )} \sqrt{b^{2} - 4 \, a c}}{c x^{4} + b x^{2} + a}\right ) +{\left (b^{2} - 4 \, a c\right )} \log \left (c x^{4} + b x^{2} + a\right )}{4 \,{\left (b^{2} c - 4 \, a c^{2}\right )}}, \frac{2 \, \sqrt{-b^{2} + 4 \, a c} b \arctan \left (-\frac{{\left (2 \, c x^{2} + b\right )} \sqrt{-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right ) +{\left (b^{2} - 4 \, a c\right )} \log \left (c x^{4} + b x^{2} + a\right )}{4 \,{\left (b^{2} c - 4 \, a c^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^5+b*x^3+a*x),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b^2 - 4*a*c)*b*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c + (2*c*x^2 + b)*sqrt(b^2 - 4*a*c))/(c*x^4 +
 b*x^2 + a)) + (b^2 - 4*a*c)*log(c*x^4 + b*x^2 + a))/(b^2*c - 4*a*c^2), 1/4*(2*sqrt(-b^2 + 4*a*c)*b*arctan(-(2
*c*x^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)) + (b^2 - 4*a*c)*log(c*x^4 + b*x^2 + a))/(b^2*c - 4*a*c^2)]

________________________________________________________________________________________

Sympy [B]  time = 0.813335, size = 223, normalized size = 3.54 \begin{align*} \left (- \frac{b \sqrt{- 4 a c + b^{2}}}{4 c \left (4 a c - b^{2}\right )} + \frac{1}{4 c}\right ) \log{\left (x^{2} + \frac{- 8 a c \left (- \frac{b \sqrt{- 4 a c + b^{2}}}{4 c \left (4 a c - b^{2}\right )} + \frac{1}{4 c}\right ) + 2 a + 2 b^{2} \left (- \frac{b \sqrt{- 4 a c + b^{2}}}{4 c \left (4 a c - b^{2}\right )} + \frac{1}{4 c}\right )}{b} \right )} + \left (\frac{b \sqrt{- 4 a c + b^{2}}}{4 c \left (4 a c - b^{2}\right )} + \frac{1}{4 c}\right ) \log{\left (x^{2} + \frac{- 8 a c \left (\frac{b \sqrt{- 4 a c + b^{2}}}{4 c \left (4 a c - b^{2}\right )} + \frac{1}{4 c}\right ) + 2 a + 2 b^{2} \left (\frac{b \sqrt{- 4 a c + b^{2}}}{4 c \left (4 a c - b^{2}\right )} + \frac{1}{4 c}\right )}{b} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/(c*x**5+b*x**3+a*x),x)

[Out]

(-b*sqrt(-4*a*c + b**2)/(4*c*(4*a*c - b**2)) + 1/(4*c))*log(x**2 + (-8*a*c*(-b*sqrt(-4*a*c + b**2)/(4*c*(4*a*c
 - b**2)) + 1/(4*c)) + 2*a + 2*b**2*(-b*sqrt(-4*a*c + b**2)/(4*c*(4*a*c - b**2)) + 1/(4*c)))/b) + (b*sqrt(-4*a
*c + b**2)/(4*c*(4*a*c - b**2)) + 1/(4*c))*log(x**2 + (-8*a*c*(b*sqrt(-4*a*c + b**2)/(4*c*(4*a*c - b**2)) + 1/
(4*c)) + 2*a + 2*b**2*(b*sqrt(-4*a*c + b**2)/(4*c*(4*a*c - b**2)) + 1/(4*c)))/b)

________________________________________________________________________________________

Giac [A]  time = 1.08947, size = 80, normalized size = 1.27 \begin{align*} -\frac{b \arctan \left (\frac{2 \, c x^{2} + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{2 \, \sqrt{-b^{2} + 4 \, a c} c} + \frac{\log \left (c x^{4} + b x^{2} + a\right )}{4 \, c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/(c*x^5+b*x^3+a*x),x, algorithm="giac")

[Out]

-1/2*b*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/(sqrt(-b^2 + 4*a*c)*c) + 1/4*log(c*x^4 + b*x^2 + a)/c